Exercice 1.

Soit f la fonction définie par $f(x) = \frac{x}{\sqrt{x+1}}$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Justifier que f est dérivable sur l'intervalle $I =]0; +\infty[$ et déterminer f'(x) pour $x \in I$.
- 3. a. Calculer le taux de variation de f entre 0 et h.
 - b. En déduire que f est dérivable en 0 et déterminer f'(0).
- 4. Déduire des questions précédentes l'ensemble \mathcal{D}' de dérivabilité de f.

Exercice 2.

Soit \mathscr{P} la parabole représentant la fonction $f: x \mapsto x^2 - x + 3$ et Δ_m la droite d'équation y = mx + 2 où m est un réel quelconque.

- 1. Pour quelles valeurs de m la droite Δ_m et la parabole $\mathscr P$ ont-elles un unique point commun?
- 2. Démontrer que pour chaque valeur obtenue à la question précédente la droite Δ_m correspondante est la tangente à \mathscr{P} au point de contact entre \mathscr{P} et Δ_m .

Exercice 3.

Page 321 ex 71 dans votre livre.

1^{re} S 2

DEVOIR MAISON Nº 6

pour le 29 janvier 2009

Exercice 1.

Soit f la fonction définie par $f(x) = \frac{x}{\sqrt{x}+1}$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Justifier que f est dérivable sur l'intervalle $I =]0; +\infty[$ et déterminer f'(x) pour $x \in I$.
- 3. a. Calculer le taux de variation de f entre 0 et h.
 - b. En déduire que f est dérivable en 0 et déterminer f'(0).
- 4. Déduire des questions précédentes l'ensemble \mathcal{D}' de dérivabilité de f.

Exercice 2.

Soit \mathscr{P} la parabole représentant la fonction $f: x \mapsto x^2 - x + 3$ et Δ_m la droite d'équation y = mx + 2 où m est un réel quelconque.

- 1. Pour quelles valeurs de m la droite Δ_m et la parabole $\mathscr P$ ont-elles un unique point commun ?
- 2. Démontrer que pour chaque valeur obtenue à la question précédente la droite Δ_m correspondante est la tangente à \mathscr{P} au point de contact entre \mathscr{P} et Δ_m .

Exercice 3.

Page 321 ex 71 dans votre livre.