Suites

Suite de nombres réels 1

Définition 1.1

Définition 1

On appelle suite de terme général u_n et on note $(u_n)_{n\geq 0}$ ou plus simplement u la liste ordonnée des nombres $u_0, u_1, u_2, u_3, \ldots$ Les nombres u_i son appelés les termes de la suite.

Un suite (u_n) est donc une application définie par $u: \mathbb{N} \longrightarrow \mathbb{R}$

$$n \longmapsto u_r$$

Remarque 1

Parfois le premier terme d'une suite peut être u_1 et non pas u_0 .

Exemple 1

On définit (u_n) comme la suite des nombres pairs.

Dans ce cas, on a : $u_0 = 0$, $u_1 = 2$, $u_2 = 4$, On peut écrire aussi $u_n = 2 \times n$.

1.2 Mode de génération

Une suite (u_n) est entièrement définie si on est capable de calculer u_n pour n'importe quelle valeur de n. Il existe deux façons usuelles pour définir une suite :

1.2.1Suite définie « en fonction de n »

Exemple 2

On considère la fonction $f: \mathbf{R} \longrightarrow \mathbf{R}$ $x \longmapsto f(x) = \frac{x+3}{x^2+1}$

$$x \longmapsto f(x) = \frac{x+3}{x^2+1}$$

Si $x \in \mathbb{N}$, f(x) est toujours défini. On peut donc considérer la suite u de terme général :

$$u_n = f(n) = \frac{n+3}{n^2+1}$$

On a alors:

$$u_0 = \frac{0+3}{0^2+1} = 3$$
, $u_1 = \frac{1+3}{1^2+1} = 2$, ...

Dans cette situation, on est bien en mesure de calculer u_n pour tout $n \in \mathbb{N}$.

Représentation graphique d'une suite définie « en fonction de n »

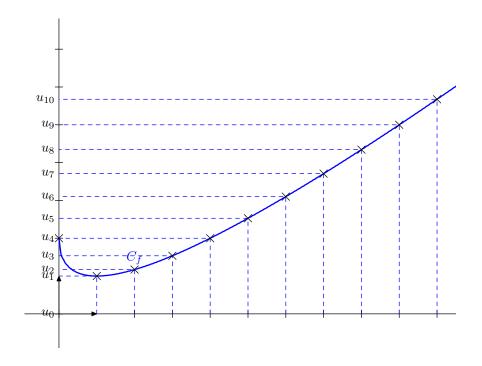
Soit u une suite définie par $u_n = f(n)$ pour $n \in \mathbb{N}$, où f est une fonction numérique définie

On trace dans un repère la représentation graphique de f. Le terme u_i de la suite est alors l'ordonnée du point de C_f dont l'abscisse est i.

Exemple 3

Le graphique ci-dessous représente la suite u définie par $u_n = f(n)$, où f est la fonction définie $\operatorname{sur} \mathbf{R} \operatorname{par} f(x) = x - 2\sqrt{x} + 2$

1



Suite définie par récurrence 1.2.2

Exemple 4

Je possède 1 000 € sur mon livret d'épargne. Chaque année on me reverse dessus 5 % en intérêts et je rajoute 100 \in . J'appelle u_n la somme dont je dispose sur mon livret après n ans. On a donc:

- pour $n \in \mathbb{N}$, $u_{n+1} = (1 + \frac{5}{100}) \times u_n + 100 = 1,05u_n + 100$.
- la somme disponible sur le livret aujourd'hui est 1 000€. Donc : $u_0 = 1 000$

On a: $u_1 = 1,05 \times 1000 + 100 = 1150$, puis $u_2 = 1,05 \times 1150 + 100 = 1307,50...$ De proche en proche, on peut donc calculer u_n pour n'importe quelle valeur de n.

Définition 2

Soit f une fonction numérique définie sur **R**, et a un réel quelconque. On dit que la suite $(u_n)_{n>0}$ vérifiant $\begin{cases} u_0 = 0 \\ u_{n+1} = f(u_n), \text{ pour tout } n \in \mathbf{N} \end{cases}$ est définie par $r\'{e}currence$ et on note :

$$u: \begin{cases} u_0 = a \\ \text{pour } n \in \mathbb{N}, u_{n+1} = f(u_n) \end{cases}$$

Remarque 2

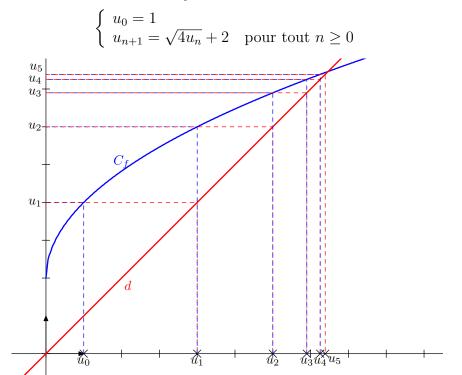
Lorqu'une suite est définie par récurrence, pour calculer u_n , on est obligé d'avoir calculé tous les termes précédents.

Représentation graphique d'une suite définie par récurrence

Soit u la suite définie par : $\begin{cases} u_0 \in \mathbf{R} \\ u_{n+1} = f(u_n) \text{ pour tout } n \geq 0 \end{cases}$ On trace dans un repère la droite d d'équation y = x et la courbe représentative \mathcal{C}_f de la fonction f. On place ensuite sur l'axe des abscisses u_0 . On a $u_1 = f(u_0)$; on peut donc lire u_1 sur l'axe des ordonnées comme l'image de u_0 par f. On reporte alors u_1 sur l'axe des abscisses grâce à d.

Exemple 5

Le graphique ci-dessous est obtenu avec $f: x \mapsto \sqrt{4x} + 2$ et $u_0 = 1$. On a donc u définie par :



2 Variations d'une suite

Définition 3

On dit que la suite $(u_n)_{n\geq 0}$ est :

- strictement croissante si pour tout $n \in \mathbb{N}$, $u_{n+1} > u_n$.
- strictement décroissante si pour tout $n \in \mathbb{N}$, $u_{n+1} < u_n$.

Exemple 6

On pose pour tout $n \in \mathbb{N}$, $u_n = (2n+1)^2$. Pour étudier les variations de $(u_n)_{n\geq 0}$, on calcule $u_{n+1} - u_n$:

$$u_{n+1} - u_n = (2(n+1)+1)^2 - (2n+1)^2$$

$$= (2n+3)^2 - (2n+1)^2$$

$$= 4n^2 + 12n + 9 - (4n^2 + 4n + 1)$$

$$= 8n + 8 > 0, \text{ pour } n \in \mathbf{N}$$

Donc la suite $(u_n)_{n\geq 0}$ est strictement croissante.

Exemple 7

On considère la suite $(v_n)_{n\geq 0}$ définie par récurrence par : $\begin{cases} v_0 = 10 \\ v_{n+1} = (v_n)^2 + 3v_n + 1 \end{cases}$ Pour étudier les variations de (v_n) , on va calculer $v_{n+1} - v_n$:

$$v_{n+1} - v_n = (v_n)^2 + 3v_n + 1 - v_n$$

= $(v_n)^2 + 2v_n + 1$
= $(v_n + 1)^2 > 0$, pour $n \in \mathbb{N}$

3

Donc la suite $(v_n)_{n\geq 0}$ est strictement croissante.

3 Suites arithmétiques

3.1 Définition

Définition 4

Une suite $(u_n)_{n\geq 0}$ est dite arithmétique si la différence entre deux termes consécutifs est constante. C'est à dire qu'il existe un réel r tel que pour tout entier naturel n, $u_{n+1} = u_n + r$. Le réel r est appelé r as a puelé r as a puelée r as a puelée r and r and r are r and

Exemple 8

Si u est la suite arithmétique de premier terme $u_0 = 5$ et de raison 3, on a :

$$u_0 = 5$$

 $u_1 = u_0 + 3 = 5 + 3 = 8$
 $u_2 = u_1 + 3 = 8 + 3 = 11$

3.2 Calcul du terme général

Théorème 1

- si u est une suite arithmétique de premier terme u_0 et de raison r, alors, pour tout $n \in \mathbf{N}$, $u_n = u_0 + nr$.
- si pour tout $n \in \mathbb{N}$, $u_n = a + b \cdot n$, alors, u est la suite arithmétique de premier terme $u_0 = a$ et de raison b.

Démonstration:

- On a: $u_1 = u_0 + r$, puis, $u_2 = u_1 + r = (u_0 + r) + r = u_0 + 2r$.
 - De même, $u_3 = u_2 + r = (u_0 + 2r) + r = u_0 + 3r$, ... et ainsi de suite, on obtient $u_n = u_0 + nr$.
- Si pour tout $n \in \mathbb{N}$, $u_n = a + nb$, alors $u_{n+1} u_n = (a + (n+1)b) (a+nb) = b$. Donc, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + b$, et donc u est une suite arithmétique de raison b et de premier terme $u_0 = a + 0 \cdot b = a$.

Exemple 9

En reprenant la suite de l'exemple 8, on a :

Pour tout
$$n \in \mathbb{N}$$
, $u_n = 5 + n \times 3 = 5 + 3n$

Remarque 3

Si le premier terme d'une suite arithmétique est u_1 , et sa raison est r, on a :

pour tout
$$n \in \mathbb{N}^*$$
, $u_n = u_1 + (n-1)r$

3.3 Calcul de la somme des premiers termes

Propriété 1

La somme S des n premiers termes d'une suite arithmétique est :

$$S = \frac{n \times (\text{premier terme} + \text{dernier terme})}{2}$$

4

Dans le cas où le premier terme est u_0 , on obtient : $S = \frac{n \times (u_0 + u_{n-1})}{2}$. Dans le cas où le premier terme est u_1 , on obtient : $S = \frac{n \times (u_1 + u_{n-1})}{2}$. **Démonstration :** (cas où le premier terme est u_1)

On va écrire S de deux façons différentes :

$$S = u_1 + (u_1 + r) + \dots + (u_1 + (n-1)r) + (u_1 + nr)$$

$$S = (u_n - nr) + (u_n - (n-1)r) + \dots + (u_n - r) + u_n$$

Donc : $2S = n \times u_1 + n \times u_n$ (les autres termes s'annulent) d'où le résultat en divisant les deux membres par 2.

Exemple 10

Soit u la suite arithmétique de premier terme $u_1 = 1$ et de raison r = 1. On a pour tout $n \in \mathbb{N}^*$, $u_n = u_1 + (n-1) \times r = nr$. On a donc la somme des n premiers termes qui vaut :

$$S = 1 + 2 + 3 + \dots + (n-1) + n = \frac{n \times (1+n)}{2}$$

Application: $1 + 2 + 3 + \dots + 100 = \frac{100 \times 101}{2} = 5050$.

4 Suites géométriques

4.1 Définition

Définition 5

Une suite $(u_n)_{n\geq 0}$ est dite géométrique si chaque terme est obtenu en multipliant le précédent par un même nombre q. C'est à dire qu'il existe un réel q tel que pour tout $n \in \mathbf{N}$, $u_{n+1} = q \times u_n$. Le réel q est appelé raison de la suite $(u_n)_{n\geq 0}$.

Remarque 4

Si on considère que la suite u n'est pas la suite nulle¹, u est géométrique si pour tout $n \in \mathbb{N}$, on a : $\frac{u_{n+1}}{u_n} = q$.

Exemple 11

Si u est la suite géométrique de premier terme $u_0 = 5$, et de raison q = 2, on a :

$$u_0 = 5$$
, $u_1 = q \times u_0 = 2 \times 5 = 10$, $u_2 = q \times u_1 = 2 \times 10 = 20$, $u_3 = q \times u_2 = 2 \times 20 = 40$, ...

4.2 Calcul du terme général

Théorème 2

- si u est une suite géométrique de premier terme u_0 et de raison q, alors, pour tout $n \in \mathbf{N}$, $u_n = u_0 \times q^n$.
- si pour tout $n \in \mathbb{N}$, $u_n = a \times b^n$, alors, u est la suite géométrique de premier terme $u_0 = a$ et de raison b.

Exemple 12

En reprenant la suite géométrique de l'exemple 11, on a :

pour tout
$$n \in \mathbb{N}$$
, $u_n = u_0 \times q^n = 5 \times 2^n$

Remarque 5

Si le premier terme est u_1 , on a : pour tout $n \in \mathbb{N}^*$, $u_n = u_1 \times q^{n-1}$.

 $^{^1\}mathrm{La}$ suite nulle est la suite dont tous les termes sont égaux à zéro.

4.3 Calcul de la somme des premiers termes

Propriété 2

Soit q un réel différent de 0 et de 1. Alors, pour tout $n \in \mathbb{N}$, on a :

$$1 + q + q^{2} + \ldots + q^{n} = \frac{1 - q^{n+1}}{1 - q}$$

Remarque 6

- Si
$$q = 0$$
, $1 + q + q^2 + \dots + q^n = 1$.
- Si $q = 1$, $1 + q + q^2 + \dots + q^n = n + 1$.

Exemple 13

$$si q = 2,$$

$$1+q+q^2=1+2+4=7$$
. En appliquant la formule : $1+q+q^2=\frac{1-2^3}{1-2}=\frac{-7}{-1}=7$. $1+2+\cdots+2^{10}=\frac{1-2^{11}}{1-2}=2047$.

Propriété 3

Soit u une suite géométrique de premier terme u_0 et de raison q, avec q différent de 1 et de 0. On a :

$$u_0 + u_1 + \dots u_n = u_0 \cdot \frac{1 - q^{n+1}}{1 - q}$$

Démonstration:

 $u_0 = u_0 \times 1$, $u_1 = u_0 \times q$, $u_2 = u_0 \times q^2$,.... Ainsi, on a:

$$u_0 + u_1 + u_2 + \dots + u_n = u_0 + u_0 \times q + u_0 \times q^2 + \dots + u_0 \times q^n = u_0 (1 + q + q^2 + \dots + q^n)$$

En utilisant la propriété 2, on obtient :

$$u_0 + u_1 + \ldots + u_n = u_0 \cdot \frac{1 - q^{n+1}}{1 - q}$$

Remarque 7

Si u est une suite géométrique de raison q, la somme des premiers termes peut aussi s'écrire :

$$S = \frac{\text{premier terme} - q \times \text{dernier terme}}{1 - q}$$

Exemple 14

Calculer $S = 3 + 9 + 27 + 81 + \dots + 2187$:

S est la somme des 7 premiers termes d'une suite géométrique u de premier terme $u_0=3$ et de raison q=3. Donc :

$$S = 3 \times \frac{1 - 3^7}{1 - 3} = 3 \times 1093 = 3279$$

6

Table des matières

1	Sui	e de nombres réels	1	
	1.1	Définition		
	1.2	Mode de génération		
		1.2.1 Suite définie « en fonction de n »		
		1.2.2 Suite définie par récurrence	. 2	
2	Var	ations d'une suite	5	
3	Suites arithmétiques			
	3.1	Définition		
	3.2	Calcul du terme général		
		Calcul de la somme des premiers termes		
4	Suites géométriques			
	4.1	Définition		
		Calcul du terme général		
		Calcul de la somme des premiers termes		