Exercice 1.

On considère les suites u, v et w définies sur \mathbf{N} par :

$$u_n = 3n + 1;$$
 $v: \begin{cases} v_0 = 2 \\ v_{n+1} = 3u_n + 1, n \in \mathbf{N} \end{cases}$; $w: \begin{cases} w_0 = 2 \\ w_{n+1} = -w_n^2 + 2w_n - 1, n \in \mathbf{N} \end{cases}$

Calculer les cinq premiers termes de chaque suite.

Exercice 2.

- 1. Une suite arithmétique u est définie par son premier terme $u_0 = -2$ et sa raison r = 3. Calculer u_9 et u_{99} .
- 2. Une suite arithmétique v est définie par son premier terme $v_0 = 1$ et sa raison r = -2. Calculer v_5 et v_{20} .
- 3. Une suite arithmétique w est définie par les termes $w_{10} = 14$ et $w_{35} = 44$. Déterminer sa raison, son premier terme w_0 et l'expression de son terme général en fonction de n.

Exercice 3.

- 1. Une suite géométrique u est définie par son premier terme $u_0 = 1$ et sa raison q = 2. Calculer u_4 et u_{11} .
- 2. Une suite géométrique v est définie par son premier terme $v_0 = 128$ et sa raison $q = \frac{1}{2}$. Calculer v_4 et v_{11} .
- 3. La suite géométrique w est définie par les termes $w_3 = 2,4$ et $w_{10} = 307,2$. Déterminer la raison q, le premier terme w_0 et l'expression de w_n en fonction de n.

Exercice 4.

Calculer la somme des dix premiers termes des suites des exercices 2 et 3.

Exercice 5.

On appelle rémunération d'un capital les intérêts produits par le capital une fois placé. Le montant de cette rémunération dépend de la durée du placement, du montant du capital ainsi que de la catégorie des intérêts. Ceux-ci sont dits « simples » lorsqu'ils sont proportionnels à la durée du placement. Ils sont dits « composés » lorsqu'à la fin de chaque période(année, semestre, mois...) les intérêts produits sont ajoutés au capital. Ils produisent alors aux-mêmes des intérêts au cours des périodes suivantes.

1. Intérêts simples

Antoine dispose de $3500 \in \text{qu'il}$ place à intérêts simples au taux annuel de 6%. On note C_0 le capital de départ et C_n la somme dont disposera Antoine au bout de n années de placement.

- a. Calculer C_1 et C_2 .
- b. Exprimer C_{n+1} en fonction de C_n .
- c. Quelle est la nature de la suite (C_n) ?
- d. En déduire l'expression de C_n en fonction de n.
- e. De quelle somme disposera-t-il s'il laisse son argent placé pendant 10 ans?

2. Intérêts composés

Armand dispose de 3500 \in qu'il place à intérêts composés au taux annuel de 5%. On note K_0 le capital de départ et K_n la somme dont disposera Armand au bout de n années de placement.

a. Calculer K_1 et K_2 .

- b. Exprimer K_{n+1} en fonction de K_n .
- c. Quelle est la nature de la suite (K_n) ?
- d. En déduire l'expression de K_n en fonction de n.
- e. De quelle somme disposera-t-il s'il laisse son argent placé pendant 10 ans?
- 3. Comparer les deux placements.

Exercice 6.

On considère la suite u définie sur \mathbf{N} par $\left\{\begin{array}{l} u_0=2\\ u_{n+1}=\frac{2}{3}u_n+1, \text{ pour } n\in\mathbf{N} \end{array}\right.$

- 1. Calculer u_1, u_2, u_3 .
- 2. La suite u est-elle arithmétique? géométrique?
- 3. On définit la suite v par $v_n = u_n 3$ pour tout $n \in \mathbb{N}$.
 - a. Calculer v_0, v_1, v_2 .
 - b. Déterminer la nature de la suite v.
 - c. En déduire l'expression de v_n en fonction de n.
- 4. a. Exprimer u_n en fonction de v_n , puis en fonction de n.
 - b. Calculer u_8 .

Exercice 7.

Partie A

Une balle élastique est lâchée d'une hauteur de 100 cm au-dessus d'une table; elle rebondit plusieurs fois. On appelle h_n la hauteur en centimètre du n^e rebond, et h_0 vaut 100. La hauteur atteinte à chaque rebond est égale 9/10 de la hauteur du rebond précédent.

- 1. Calculer h_1 , h_2 , h_3 et h_4 .
- 2. Exprimer h_n en fonction de l'entier n. Quelle est la nature de la suite?
- 3. Calculer à 10^{-2} près la hauteur du 10^{e} rebond.
- 4. A partir de quel rebond la hauteur deviendra-t-elle inférieure à 1 cm?

Partie B

À chaque rebond, la balle ne rebondit pas exactement au même endroit. La distance entre le premier rebond et le deuxième est de 10 cm, on appelle d_1 cette distance. À chaque nouveau rebond, la distance parcourue vaut les 2/3 de la distance parcourue au rebond précédent. On considère la suite (d_n) des distances entre chaque rebond. On appelle l_n la distance horizontale parcourue par la balle après n+1 rebonds.

- 1. Quelle est la nature de la suite (d_n) ? Exprimer d_n en fonction de n.
- 2. a. Calculer l_1 , l_2 , l_3 et l_4 .
 - b. Exprimer l_n en fonction de n.
 - c. Calculer à 10^{-2} près la valeur de l_{10} .
- 3. Le premier rebond à lieu 28 cm du bord de la table et la balle se dirige droit sur lui, tombera-t-elle? Si oui, après quel rebond?
- 4. À quelle distance du bord de la table, au moins, doit se situer le premier rebond pour que la balle ne tombe pas?